Arrangement of sympathetic fibers within the human common peroneal nerve: implications for microneurography

Rebecca P. R. Tompkins,1,3 C. W. J. Melling,2 Timothy D. Wilson,3 Brent D. Bates,2 and J. Kevin Shoemaker2,4

1Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; 2Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, Ontario, Canada; 3Corps for Research in Instructional and Perceptual Technologies, Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; and 4Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada

Submitted 1 March 2013; accepted in final form 20 September 2013

Tompkins RP, Melling CWJ, Wilson TD, Bates BD, Shoemaker JK. Arrangement of sympathetic fibers within the human common peroneal nerve: implications for microneurography. J Appl Physiol 115: 1553–1561, 2013. First published October 3, 2013; doi:10.1152/japplphysiol.00273.2013.—Recently, interest has grown in the firing patterns of individual or multitunit action potential firing patterns in human muscle sympathetic nerve recordings using microneurography. Little is known, however, about sympathetic fiber distribution in human lower limbs that will affect the multifunit recordings. Therefore, the purpose of this study was to examine the sympathetic fiber distribution within the human common peroneal nerve using immunohistochemical techniques (tyrosine hydroxylase, avidin-biotin complex technique). Five-micrometer transverse and 10-μm longitudinal sections, fixed in formaldehyde, were obtained from the peroneal nerve that had been harvested from three human cadavers (83 ± 11 yr) within 24 h of death. Samples of rat adrenal gland and brain served as controls. Sympathetic fiber arrangement varied between left and right nerves of the same donor, and between donors. However, in general, sympathetic fibers were dispersed throughout ~25–38 fascicles of the peroneal nerve. The fibers were grouped in bundles of ~2–44 axons or expressed individually throughout the fascicles, and the distribution was skewed toward smaller bundles with median and interquartile ratio values of 5 and 1 axons/bundle, respectively. These findings confirm the bundled organization of sympathetic axons within the peroneal nerve and provide the anatomical basis for outcomes in microneurographic studies.

sympathetic axons; human; C fibers

http://www.jappl.org

8750-7587/13 Copyright © 2013 the American Physiological Society

and then embedded in paraffin wax (Thermo Shandon Histocentre 3). Ethanol. Finally, tissues were processed overnight (Leica ASP 300)
were fixed in formalin for 24 h before being rinsed and stored in 70%
nerving tissue in a reasonable biological length, the ends of the removed
mizing the TH staining procedure in peripheral axonal tissue. To keep
used to optimize the TH staining procedure, as well as establish

Methods

Tissue Fixation

Tissue samples were taken from both rats and humans for immuno-
histochemical staining. Use of cadaveric material for this project
received approval through the Internal Research Ethics Committee
(Body Bequeathal Programme) within the Department of Anatomy and
Cell Biology, The University of Western Ontario, for the extrade-
partmental use of cadaveric material for research purposes. For the
rodent tissues, all procedures complied with the Animal Care guide-
lines and ethics approval board from The University of Western
Ontario.

Rat tissues. Tissues from euthanized Sprague-Dawley rats were
used to optimize the TH staining procedure, as well as establish
control data. Sciatic nerves were harvested for the purpose of opti-
mizing the TH staining procedure in peripheral axonal tissue. To keep
nerve tissue in a reasonable biological length, the ends of the removed
sciatic nerves were tied with string and stretched onto a piece of card
until nerve bandings disappeared. Adrenal glands and whole brains
were excised for use as positive and negative control tissues. Tissues
were fixed in formalin for 24 h before being rinsed and stored in 70%
ethanol. Finally, tissues were processed overnight (Leica ASP 300)
and then embedded in paraffin wax (Thermo Shandon Histocentre 3).

Human tissue. The cadavers were donated to the Bequeathal
Program in the Department of Anatomy and Cell Biology at the
University of Western Ontario (Table 1). Within 24 h of death, and
before embalming, both the right and left CPNs were surgically
excised through a 5-cm-long incision over the fibular head of each leg.
Indian ink was used to mark the lateral aspect of the nerve, allowing
for correct anatomical orientation when the nerve was removed. Each
nerve section was fixed to a plastic platform in its in vivo anatomical
length. Nerves were then fixed in formalin for 24 h before being rinsed
and stored in 70% ethanol. Tissues were processed overnight (Leica
ASP 300) and then embedded in paraffin wax (Thermo Shandon Histocentre 3).

Immunohistochemical Protocol Development

An objective of this investigation was to optimize an immunohis-
tochemical protocol to stain for TH in human tissues. This approach
identifies sympathetic C fibers, avoiding detection of sensory C fibers.
A major concern was determining the optimal antibody concentration.
As human tissues are not always readily available, rat sciatic nerves
were used in the protocol development. The protocol outlined here
represents the results of the preliminary work performed on rat sciatic
nerves.

The ABC immunohistochemical method was used in the present
study because of its excellent sensitivity and minimal background
staining (12). On the first day, slides were deparaffinized (Leica
Auto-stainer XL), submerged in a cartridge of citrate antigen retrieval
solution (pH 6.0), placed in a pressure cooker for antigen retrieval at
120°C for 2 h, and then washed in Tween phosphate buffer solution
(TPBS) for 5 min. To prevent endogenous peroxidase activity, slides
were quenched by placing them in 3% hydrogen peroxide for 15–20
min. During this time, the blocking/avidin solutions were created by
mixing 1 ml of 10% goat serum solution with four drops (~18 μl)
of avidin (Vector avidin-biotin blocking kit; catalog no. SP-2001).
After quenching, slides were washed in TPBS and two changes of
phosphate buffer solution (PBS) for 2 min each. Slides were placed in
an incubation chamber, and the blocking/avidin solution was applied
to each tissue with a 200-μl pipette until there was a dome of solution
over the tissue. Lids were placed on the incubation chambers, and
slides sat at room temperature for 1–2 h. In the last 15 min of
blocking/avidin solution incubation, three different primary antibody
solutions (Millipore rabbit polyclonal anti-TH; catalog no. AB152; lot
no. N1723896) were prepared as follows: 1) negative solution,
combined four drops of biotin (Vector avidin-biotin blocking kit;
catalog no. SP-2001) to every 1 ml of 10% goat serum solution; 2)
positive solution, combined 1 ml of 1% goat serum solution, four drops of biotin,
and anti-TH at a ratio of 1:2,300; 3) absorbed solution,
combined 1 ml of 1% goat serum solution, four drops of biotin, and
anti-TH at a ratio of 1:2,300 with 5 μl TH protein (Novus Human TH
protein; catalog no. NBP1–43461). Slides were washed for 2 min in
PBS before application of these primary antibody solutions. Slides
were then individually dried and placed in incubation chambers,
and the solution was applied to cover the entire tissue in the same manner
as the blocking/avidin solution. Tissues were incubated in the primary
antibody solution overnight at room temperature.

Tissue Cutting

Tissue blocks were trimmed of excess paraffin wax and hydrated
on ice for at least 30 min. Five-micrometer transverse sections of
tissues were made (10 each). In addition, 10-μm longitudinal sections
of the human nerves (10 each) were taken to aid in the verification of
the sympathetic fiber staining. These slices were placed on a hot water
bath before mounting. All slides were incubated overnight at 37°C.

Table 1. Donor Information

<table>
<thead>
<tr>
<th>Donor No.</th>
<th>Age, yr</th>
<th>Sex</th>
<th>Symptoms at Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1575</td>
<td>89</td>
<td>Female</td>
<td>Pneumonia, dementia, hypothyroidism, hypertension</td>
</tr>
<tr>
<td>1581</td>
<td>71</td>
<td>Male</td>
<td>Pancreatic cancer</td>
</tr>
<tr>
<td>1582</td>
<td>90</td>
<td>Female</td>
<td>Bronchopneumonia, Alzheimer’s/dementia</td>
</tr>
</tbody>
</table>

Table 2. Peroneal Nerve Fascicle Characteristics

<table>
<thead>
<tr>
<th>Donor No.</th>
<th>Peroneal Nerve CSA, mm²</th>
<th>No. Fascicles in Section</th>
<th>Total Fascicle CSA, mm²</th>
<th>Fascicle Size, mm²</th>
<th>No. Fascicles with SNS Axons</th>
<th>No. Fascicles With/Without TH-positive Axons</th>
<th>Relative CSA of Sympathetic Fascicles, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1581-L</td>
<td>12.21</td>
<td>25</td>
<td>1.46</td>
<td>0.061</td>
<td>25/25</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>1581-R</td>
<td>11.05</td>
<td>27</td>
<td>1.63</td>
<td>0.26</td>
<td>26/26</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>1582-L</td>
<td>7.21</td>
<td>27</td>
<td>2.05</td>
<td>0.114</td>
<td>18/18</td>
<td>0.94</td>
<td>99</td>
</tr>
<tr>
<td>1582-R</td>
<td>8.74</td>
<td>27</td>
<td>2.55</td>
<td>0.094</td>
<td>26/27</td>
<td>0.96</td>
<td>99</td>
</tr>
<tr>
<td>1575-L</td>
<td>12.12</td>
<td>38</td>
<td>0.95</td>
<td>0.032</td>
<td>37/38</td>
<td>0.97</td>
<td>99</td>
</tr>
<tr>
<td>1575-R</td>
<td>11.31</td>
<td>34</td>
<td>1.24</td>
<td>0.040</td>
<td>33/34</td>
<td>0.97</td>
<td>99</td>
</tr>
<tr>
<td>AVG</td>
<td>10.44</td>
<td>30</td>
<td>1.65</td>
<td>0.067</td>
<td>28/28</td>
<td>0.97</td>
<td>99</td>
</tr>
<tr>
<td>± SD</td>
<td>2.02</td>
<td>5</td>
<td>0.58</td>
<td>0.031</td>
<td>0.02</td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>

Values are from the left (L) and right (R) common peroneal nerves of three individuals. CSA, cross-sectional area of entire nerve (including interfascicle connective tissue); IQR, interquartile range; SNS, sympathetic nervous system; TH, tyrosine hydroxylase. AVG, average of six nerves.

J Appl Physiol • doi:10.1152/japplphysiol.00273.2013 • www.jappl.org
On the second day, the 2° antibody solution was prepared by combining biotinylated 2° antibody (Vector Biotinylated anti-rabbit IgG, made in goat; catalog no. BA-1000) and 1% goat serum solution at a ratio of 1:400. Slides were washed in TPBS for 2 min and two changes of PBS for 2 min each. Individually slides were dried, and Vectastain Elite ABC reagent was applied, covering the entire tissue. Incubation chamber lids were applied, and Vectastain incubation occurred for 1–2 h.

While tissues were incubating, the Vectastain Elite ABC reagent was prepared by combining 2.5 ml of PBS with one drop each of reagents A and B. This solution was prepared at least 30 min before desired application and sat at room temperature for 30 min. When tissue incubation was complete, slides were washed in TPBS for 2 min and two changes of PBS for 2 min each. Individually slides were dried, and Vectastain Elite ABC reagent was applied, covering the entire tissue. Incubation chamber lids were applied, and Vectastain incubation occurred for 1–2 h.

To visualize the locations of the antigen, the peroxidase on the ABC’s biotin was developed using 3'[3-diaminobenzidine (DAB). DAB will produce a characteristic brown stain where any ABC is found. When incubation was complete, slides were washed in TPBS for 2 min and two changes of PBS for 2 min each. When washing was complete, the DAB solution was prepared by combining 2.5 ml double-distilled water (ddH2O) with one drop buffer stock, two drops DAB stock, and one drop hydrogen peroxide stock, mixing well between each addition. Individually, slides were dried, and DAB solution was applied to cover entire tissue. Each slide was incubated in DAB for 8 min. After the 8 min, slides were washed using a 1,000-µl pipette with ddH2O, being careful to avoid placement of ddH2O directly on the tissue. A total of 5,000 µl were used for each slide. Washed slides were then placed in a Coplin jar of ddH2O.

Myelin Staining

To verify the location of unmyelinated sympathetic fibers within the whole nerve, eriochrome cyanine R (JT Baker Chemical) was used as a stain for myelin of the other axons. Slides were removed from the ddH2O and placed into a slide cartridge of eriochrome Cyanine R for 15 min. Slides were then washed with running water to eliminate any unbound stain. To further eliminate staining, leaving only the myelin and erythrocytes stained, slides were differentiated in a 10% aqueous iron aluminum solution for ~20–30 min. Differentiation was complete when staining was removed from background and nuclei. Slides were than washed in running water (13).

Dehydrating and Clearing

Slides were dehydrated and cleared through graded changes of ethanol and xylene (Leica Auto-stainer XL). Slides were then wiped dry, and a coverslip with dibutyl phthalate in xylene mounting agent was applied. Small concentrations of eosin in the alcohol provided a light counterstain of tissue that was not stained by the immunohistochemistry or eriochrome cyanine R procedures.
These controls included expectation of minimal staining after the DAB visualization step.

To determine accuracy of antibody binding, the TH immunohistochemistry procedure was performed on rat adrenal gland medulla and corpus striatum, tissues that demonstrate intense and distinctive patterns of TH distribution. As a further verification that actual sympathetic nerve axons were being stained, the TH staining procedure was repeated on the longitudinal nerve section during the staining procedure. Also, fascicular number could not be calculated accurately for the left donor 1575-L nerve fascicles, contained no TH-stained axons (Table 2).

Table 3. Characteristics of TH-positive axons in the common peroneal nerve

<table>
<thead>
<tr>
<th>Donor No.</th>
<th>No. Axons Total</th>
<th>Mean</th>
<th>Median</th>
<th>IQR</th>
<th>Mean</th>
<th>Median</th>
<th>IQR</th>
<th>Max</th>
<th>Min</th>
<th>1-Fiber Bundles, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1581-L</td>
<td>8,951</td>
<td>358</td>
<td>476</td>
<td>180</td>
<td>9,197</td>
<td>9,704</td>
<td>3,614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1581-R</td>
<td>18,549</td>
<td>713</td>
<td>1,060</td>
<td>552</td>
<td>19,954</td>
<td>14,131</td>
<td>4,274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1582-L</td>
<td>5,081</td>
<td>181</td>
<td>432</td>
<td>230</td>
<td>3,710</td>
<td>4,621</td>
<td>1,602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1582-R</td>
<td>2,901</td>
<td>107</td>
<td>139</td>
<td>61</td>
<td>1,583</td>
<td>2,082</td>
<td>1,072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1575-L</td>
<td>5,124</td>
<td>165</td>
<td>197</td>
<td>70</td>
<td>8,772</td>
<td>12,046</td>
<td>4,525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1575-R</td>
<td>4,272</td>
<td>126</td>
<td>170</td>
<td>62</td>
<td>5,428</td>
<td>7,062</td>
<td>3,674</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>7,480</td>
<td>275</td>
<td>412</td>
<td>193</td>
<td>8,107</td>
<td>8,274</td>
<td>3,127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± SD</td>
<td>5,784</td>
<td>232</td>
<td>247</td>
<td>190</td>
<td>6,497</td>
<td>4,555</td>
<td>1,439</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are from the L and R common peroneal nerves of three individuals.

Control Tissues

Negative control tissues. To examine secondary binding characteristics, two negative controls were used for each tissue, with the expectation of minimal staining after the DAB visualization step. These controls included 1) the omission of primary antibody, and 2) an absorption control (2, 3).

Positive control tissues. To determine accuracy of antibody binding (22), the TH immunohistochemistry procedure was performed on rat adrenal gland medulla and corpus striatum, tissues that demonstrate intense and distinctive patterns of TH distribution. As a further verification that actual sympathetic nerve axons were being stained, the TH staining procedure was repeated on the longitudinal nerve sections of the human peroneal nerve.

Viewing and Imaging Slides

Slides were viewed with a standard light microscope through ×5, ×10, ×40, and ×100 objectives. Two methods were used to photograph the nerves. First, three of the superior quality slides, from donor 1581, were digitized using Aperio slide digitizer and software: a right and left CPN, and a right CPN with an absorbed control. The remaining slides were photographed using a Zeiss Axiosvert 200 inverted microscope and Axio HRc camera. Only select slides and regions were photographed, as it was not possible to image the entire nerve section at higher magnifications.

Fascicle and Axon Characteristics

The numbers and cross-sectional area (CSA) of fascicles were quantified at ×10–20 magnification, and their CSAs (excluding perineurium), together with the CSA of the whole nerve, were determined using ImageJ software. The mean, median, and interquartile range of fascicular CSAs, and whether or not they contained TH-positive axons, were quantified.

Under ×40–100 magnification, TH-stained axons were counted manually within each fascicle with emphasis on whether or not all axons in a bundle were viewed as single axons or in bundles. The nature of bundled groupings was subjective and based on whether or not all axons in a bundle possibly would be interrogated by a single electrode position. The number of axons, axonal density, and distribution data of mean, median, and interquartile range of bundles within each fascicle were calculated.

RESULTS

Fascicle Number and Size

The CPN CSA at the fibular head site was 10 ± 2 mm² (Table 2) of which ~20% was occupied by fascicles (excluding perineurium). Total nerve fascicle number ranged from 25 to 38 (Table 2). The fascicle number was typically consistent across the various slices from the same nerve (data not shown), but not between individuals (Table 2; Fig. 1). Specifically, differences in right vs. left fascicular number ranged from 12 in donor 1581 to 7–8 in donor 1582. Of the six collected nerves, fascicle number could not be calculated accurately for the left nerve of donor 1575 due to damage to the anterior region of the nerve section during the staining procedure. Also, fascicular number will be affected by the stage of branching in the specific section. In some cases, distinct infrasacular divisions were evident, separated by what appeared to be perineurium. In this case, such divisions were counted as separate fascicles. Fascicle size was noticeably variable, both within, and between, individuals (Table 2). Both left and right nerves of donor 1575 had numerous small fascicles, and donor 1582 displayed a smaller number of large fascicles. Less than 1% of the nerve fascicles contained no TH-stained axons (Table 2). These fascicles tended to be smaller in size (Fig. 2).

Table 4. Bundled characteristics of TH-positive axons in the common peroneal nerve

<table>
<thead>
<tr>
<th>Donor No.</th>
<th>No. Bundles Total</th>
<th>Mean</th>
<th>Median</th>
<th>IQR</th>
<th>Mean</th>
<th>Median</th>
<th>IQR</th>
<th>Max</th>
<th>Min</th>
<th>1-Fiber Bundles, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1581-L</td>
<td>2,265</td>
<td>91</td>
<td>124</td>
<td>50</td>
<td>4.38</td>
<td>5.70</td>
<td>1.52</td>
<td>41</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>1581-R</td>
<td>4,320</td>
<td>166</td>
<td>216</td>
<td>87</td>
<td>4.67</td>
<td>6.24</td>
<td>2.75</td>
<td>44</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1582-L</td>
<td>1,622</td>
<td>95</td>
<td>148</td>
<td>85</td>
<td>3.13</td>
<td>3.76</td>
<td>1.02</td>
<td>44</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>1582-R</td>
<td>1,180</td>
<td>49</td>
<td>92</td>
<td>22</td>
<td>3.03</td>
<td>3.82</td>
<td>1.21</td>
<td>42</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1575-L</td>
<td>1,818</td>
<td>49</td>
<td>69</td>
<td>30</td>
<td>3.48</td>
<td>4.26</td>
<td>0.96</td>
<td>39</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>1575-R</td>
<td>1,392</td>
<td>42</td>
<td>50</td>
<td>21</td>
<td>3.13</td>
<td>3.86</td>
<td>0.82</td>
<td>39</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>AVG</td>
<td>2100</td>
<td>81</td>
<td>109</td>
<td>49</td>
<td>4.13</td>
<td>5.5</td>
<td>1</td>
<td>42</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>± SD</td>
<td>1150</td>
<td>48</td>
<td>66</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Values are from the L and R common peroneal nerves of three individuals. Bundles include those containing 1–44 axons, but the proportion of those with only 1 axon are indicated in the right column.
Sympathetic Fiber Arrangement and Size

The quantitative details regarding axonal characteristics are provided for each individual in Tables 3 and 4. It is important to note that the axonal count data should be viewed as an estimate, because variations in staining intensity, and the tightly-packed nature of C-fibers in bundles, generated difficulty in differentiating individual axons. Within this constraint, it was estimated that the content of TH-positive axons ranged from 2,901 to 18,549 across the individual nerves, with a fascicular density of 2,082–14,131 axons/mm² (Table 3). One interesting observation was the threefold greater number of sympathetic C fibers in the left vs. right CPN of donor 1581, despite similar overall nerve CSA and fascicle number.

Within fascicles that did express TH-positive staining, some fibers existed as individual axons (Fig. 3), but most were grouped in bundles (Fig. 4). As shown in Table 4, ~275 ± 233 bundles/fascicle were observed, and these ranged in size from 1 to 42 ± 2 axons/bundle. However, the distribution of bundle size was highly skewed toward smaller bundles, with the median value of 5 axons/bundle (interquartile range of 1; Table 4). Approximately 20% of the axonal “bundles” existed as single neurons. There seemed to be no pattern between fascicle size and sympathetic fiber concentration between the left and right nerves from the same donor, or within a single nerve section. Furthermore, in the current visual analysis of a limited number of nerves, no particular pattern could be observed regarding the location of individual or grouped TH-containing axons (Fig. 5). Diameter of the TH-containing axons ranged from approximately <1 to 2 μm; these are viewed best in Figs. 6 and 9.

Although the axon and bundle counts are considered to be estimates, the consistency of measurement was supported by the repeated assessment of axon arrangement in the right nerve of donor 1575 on separate days separated by 1 wk. The linear regression results are as follows: for axons/fascicle, r = 0.96, slope = 1.01, P < 0.0001; for the number of axonal bundles/fascicle, r = 0.99, slope = 0.94, P < 0.0001; for individual neurons, r = 0.97, slope = 0.97, P < 0.0001; for the median bundle size, r = 0.89, slope = 0.75, P < 0.0001.

Control Measures

Longitudinal nerve sections produced TH-positive staining along the length of the nerve segment (Fig. 6). Rat adrenal
gland and striatum cortex each produced significant TH staining (Figs. 7 and 8), exhibiting the accuracy of the TH staining procedure. Of interest, however, was the observation that, while the majority of staining in the adrenal gland was localized to the medulla, some also extended into the adrenal cortex, a region devoid of norepinephrine production (Fig. 7). The two negative control experiments performed on the human nerve with no primary antibody (Figs. 4 and 5) and human nerve with absorbed antibody serum (Fig. 9) each demonstrated no TH-containing axons.

DISCUSSION

The main observation from this study was that sympathetic axons within the human CPN can exist as single axons but generally are grouped in bundles of 2–42 axons with unpredictable scattering. These bundles were present in most, but not all, fascicles.

Immunohistochemistry Details

An important difference between this study and earlier work (1, 19, 21) was the primary antibody dose. It was essential that only the sympathetic fibers stained positively with DAB. Thus, in preliminary work, varying concentrations of 1° antibody were tested, which revealed that the concentration of 1:2,300 (0.5 μl of 1° antibody for 1,180 μl) optimized the sympathetic fiber resolution. Previously, higher concentrations of 1:200 and 1:1,000 were used (1, 19, 21), but these earlier studies provided inconsistent sympathetic fiber patterns. In addition, staining for surrounding tissues such as myelin sheath enhanced differentiation of C fibers from the myelinated fibers. This process exposed these tissue types and verified that the sympathetic fibers were not myelinated.

The specificity of TH-containing axons in the peroneal nerve was verified by the TH-negative control studies and also the TH-positive control studies performed in the rodent adrenal gland.
medulla and corpus striatum tissues. However, regions of the adrenal cortex adjacent to the medulla also stained positively for TH, even though norepinephrine biosynthesis does not occur in this tissue. The reasons for this staining pattern are unknown. The TH-positive staining of selective axons in the longitudinal nerve slices provide further verification that the positive TH staining in the nerve cross-section slices were true axons.

General Anatomical Considerations

As expected (4, 18), fascicle number and size varied between nerves from the same donor and between donors. These observations indicate that fascicle number seems to change over very short distances in peripheral nerves (20), likely demonstrating the branching of peripheral nerves to innervate passing structures.

Within each fascicle, the sympathetic fibers were arranged in two general patterns, namely as individual axons and in bundles. By visual inspection of distinct single TH-containing fibers, the diameter of these C fibers ranged from ~0.5 to 2.0 \(\mu \text{m} \) and often 1 \(\mu \text{m} \) or less. These dimensions are in general agreement with electron microscopy studies of all-type unmyelinated fibers in the sciatic nerves of mice (8) and rats (11, 26). Analysis of diameter distributions of unmyelinated axons from the rat sciatic nerve before and following sympathectomy suggests that sympathetic fibers are generally 0.5–1.2 \(\mu \text{m} \) (27).

Our evidence that most, but not all, fascicles contained TH-positive axons confirm the patterns identified earlier (1) in the forearm nerves and extend them to the CPN of humans.

The current analysis has emphasized the bundled nature of TH-positive axons in the CPN. The exact number of axons in each bundle was difficult to establish in this immunohistochemical approach, because overlap of staining appeared to occur between some juxtaposed axons. Nonetheless, this analysis suggests that the largest sympathetic bundles contained up to ~44 axons in the nerve sample. This number of axons/bundle fits well with recent microneurographic analysis of axonal content within multunit bursts of efferent postganglionic sympathetic nerve activity (24, 28), where a maximum of 40 action potentials were observed during very strong chemoreflex or baroreflex stress. Certainly, we suspect that some of these action potentials were due to repetitive firing of the same axon within the same burst (15, 16). However, the probability data indicate that most axons fire only once per cardiac cycle (15, 16). Therefore, the current analysis provides an anatomical basis for understanding the maximal limit of action potentials within a given burst of sympathetic nerve activity. This number will depend upon the particular bundle of sympathetic fibers impaled by the microelectrode. Moreover, the current evidence enables construction of a clearer picture regarding the practice of microneurography and the relationship between microneurographic electrode position and record-
ing success. To enhance this illustration, a schematic micro-electrode of characteristic dimensions (200 µm shaft, 5 µm tip) has been overlaid onto one of the cross-sectional images from the current study (Fig. 10). This picture highlights the anecdotal experience of this technique that 1) some parts of the nerve contain higher density of active recording sites than others; and 2) electrode position can provide small or large bursts with very small adjustments.

Another anecdotal experience of microneurographers is that high-quality muscle sympathetic nerve recordings are obtained easily in some individuals, but not in others, although the baseline burst rates are highly reproducible, regardless of the recording quality (7, 14). The current anatomical data may explain these observations. First, most bundles are probably too small to give an adequate reporting of a “burst” in the integrated neurogram. This determination comes from our laboratory’s previous observations of action potential recruitment patterns in the CPN, which indicate the smallest detectable burst in the integrated neurogram (using a signal-to-noise ratio of >3) requires approximately four or more axons to be recruited synchronously (24, 28). The majority of bundles appear to be in this range, or smaller. However, while each nerve expressed fascicles with large bundles (Table 4), there are a greater number of larger bundles in some individuals than in others, enhancing the probability of successful and higher quality recordings in only a subset of a group. The reproducibility of burst frequency noted above would merely require that the microelectrode interrogate any bundle of sufficient size to produce sufficient (e.g., 4 or more) axons firing at the same time.

Limitations

No published literature exists regarding human TH half-life. The rat unphosphorylated TH has a half-life of 15 min at 50°C, requiring harvesting of tissue as soon as possible postmortem (9). Previous studies on cadaver nerves suggest removal of tissue within 6–10 h after death (20, 21). In the present study, tissue extraction occurred within 24 h of death, but not before 6 h. Thus TH breakdown must have occurred in our cadaver tissues with the probable consequence of diminishing the staining density. Regardless, the specificity of TH staining in the rat tissues (harvested within minutes of rodent death), and the consistent staining of TH in cross-sectional, and longitudinal, slices support the conclusions that the staining patterns within the human nerves reflected TH-containing axons.

Second, not all TH-containing axons will reflect the same “type” of sympathetic C fiber. Some of these will contain axons directed to targets in the skin, whereas others will be directed toward the vasculature within skeletal muscle. No determination of such targeting can be made from the current observations.

The small sample size provides a third limitation. Nonetheless, the general pattern of axonal groupings was consistent across all six nerves. Finally, these nerve segments were obtained from elderly individuals who suffered from various diseases at the time of death. The impact of age and disease on efferent sympathetic nerve activity is well described, but whether such changes are accompanied by altered ultrastructural changes in C-fiber axonal expression are not known.
ACKNOWLEDGMENTS

The authors expressly thank Dr. John Kiernan for unselshf guidance and support of this study in the design, TH-staining protocol development, and data interpretation stages. The authors also thank Dr. Dwayne Jackson for use of the image photography equipment.

GRANTS

Funding for this study was provided by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research Team Grant in Physical Activity, Mobility and Neural Health (J.K. Shoemaker, nominated Principal Investigator; Grant 217532). J. K. Shoemaker is a Tier 1 Canada Research Chair in the Integrative Physiology of Exercise and Health.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: R.P.T. and C.M. performed experiments; R.P.T., T.D.W., and B.D.B. analyzed data; R.P.T. and T.D.W. prepared figures; R.P.T. drafted manuscript; R.P.T., C.M., T.D.W., B.D.B., and J.K.S. approved final version of manuscript; C.M. and J.K.S. interpreted results of experiments; C.M. and J.K.S. edited and revised manuscript; J.K.S. conception and design of research.

REFERENCES